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Let A: 0 = Ao< 1'1 < ... be an infinite sequence of positive numbers, let n E rJ and
Bp(z) :=n;;~l (z-I'k- l /p)/(z+Ak+ l/p). Ganelius and Newman have shown
that the expression en(A)p = maxycu;l IBp(l + iy)/(l + iy)1 is the approximation index
for the error Iln(f, A)p := infbk 111(x) - L;; ~o bkx)kll p of functions IE Lp(O, 1) in the
Lp-norm on [0, 1], 1~ p ~ 00. That is, ifI is absolutely continuous on [0, 1], then
Iln(f, A)p~Apen(A)p 111'll p , where A p<229 is a numerical constant. It is the pur­
pose of the present paper to apply another method of proof which produces small
factors Ap < 42, 1~ p < 2. As is well-known, the factor A p is small if 2 ~ p ~ 00, for
example, A p < 14, which has been proved recently by the author. © 1991 Academic

Press, Inc.

1. INTRODUCTION

Let A: 0= Ao < AI < ... be an infinite sequence of positive numbers. Let
II lip be the Lp-norms on [0,1]. We estimate the error of approximation,

J1n(f,A)p:=infllf(X)- ±bkxAkl1 '
bk k~O p

of functions f E Lp(O, 1), 1~ P < 2.
There are two methods to prove Muntz-Jackson theorems. The first, due

to Newman [15J, uses a corollary of the Hahn-Banach theorem by which
J1 n (f, A)p is characterized as

J1n(f, A)p = supr f(x) H(x) dx,
H 0

where the supremum is taken over all functions HE Lq(O, 1), q := pj(p - 1),
satisfying II HII q = 1 and

( XAkH(x) dx = 0,
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The second method, suggested by the author [7], is more elementary
and will be used in this paper: first the function f is approximated on
[0, 1] by an appropriate even algebraic polynomial Pm(x) = L5:i~] a2j x2j

,

then the monomials x
2j

, j = 1, 2, ..., [m/2] are replaced by appropriate
A-polynomials. And we get

[mi2]

,unCf,A)p~llf-Pmllp+ L la2),un(x2j,A)p. (1.2)
j~l

An essential role will be played by the Blaschke product

and the number

(1.3)

For example, (see Feinerman and Newman [4]), in the separate case,
Ak+l-Ak~2 for k~O, one has

and in the unseparate case, 0 < Ak+ 1 - Ak ~ 2, k = 0, 1, ...,

A general Muntz-Jackson theorem has been established by Ganelius and
Newman [5]. They show that the expression Gn(A)p is the approximation
index for the exponents A:

THEOREM A. If 1~ p ~ 00, n EN, and iff is absolutely continuous on
[0, 1], then

where Ap < 229 is a numerical constant.

Ganelius and Newman show that this result is the best possible in the
sense that it is false for each p, each A, and each n EN if A p is replaced by
1/600. Their proofs use the characterization (1.1) and are difficult; their
factor Ap < 229

, is very large. The method (1.2) is simpler and produces
factors Ap < 42, 1~ p < 2.
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It is well-known that A p is small if 2~ p ~ 00; for example, A p < 14,
which has been proved recently by the author [11].

2. ApPROXIMAnON OF THE MONOMIALS

For the L 2 -norm on [0, l] we have the identity

r> -1/2. In [11], this has been used to derive the inequality

for r> -1/p and 2 < p ~ 00, in particular for the uniform norm on [0, 1J,
for r> 0,

which has been derived first in [7].
Similar results for 1~ p < 2 are more difficult to get. The following

inequality is the main new achievement of this paper:

LEMMA 2.1. For 1~ p < 2 and any real number r?:- 2 one has

fJn(x r, A)p~21/P{2(r+ l/p)}r+l cn(A);+l/P.

Proof We set

(2.1)

I ._ Ak + l/p
k'- r + l/p ,

n Z -lk
B(z):= TI -I'

k=l Z +k

1
u(z) :=-1'z+

and F(z) := u(z) B(z). F is of the form

with some real coefficients Ck' The evaluation of the integrals (or the
standard residue argument) gives

1 foo e
ily

fe-PI
- --dy=
2n _ 00 iy + P 0,

if t>O

if t < 0
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for all positive numbers p. Hence the inverse Fourier transform

1 foo ,
h(t)=2n -00 F(iy) e

lty
dy

of F(iy) satisfies h(t) = 0 if t < 0 and is of the form

n

h(t)=B(-l)e- l
- L Ck e - I

\ t>O.
k=1

We set bk = Ck/B( -1). Substituting x = exp( - t/(r + 1/p)) we get

,un(xr, A)p ~ IIxr- k~1 bkXAkt ~ (r+ 1/p )-I/
p

IB( _1)1- 1 Ilhll Lp(O, 00)' (2.2)

The difficult part is to estimate IlhIILp(o,oo)' We note that

n n

Sn:= L Ik 3/2=(r+1/p)3/2 L (A k +1/p)-3/2.
k~1 k=1

Then

and

For a fixed number a, a ~ l/n, and v(t) := a2+ (t- C)2 we apply Holder's
inequality for the exponent q := 2/p. Then

(f
OO )2/P fooIlhllt(o,oo)= 0 v(t)-P/21~h(tWdt ~K 0 v(t)lh(tWdt,

where

(

00 )-1+2/P
K:= t v(t)-p/(2- p)dt .
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Since pl(2 - p) ~ 1 and an ~ 1,

(J oo )-1+2/P n
K~a-3+2/p (1 + t2 )-p/(2- p)dt ~-.

-00 a

This proves that

341

By Parseval's identity,

roo JOO 1 foo 1 fCD
J
o

Ih(tWdt= -00 Ih(tW dt=2n -00 !FUy)1
2
dt=2n -00 lu(iyWdt,

where we have used that IB(iy)1 = 1 for any real y. Hence,

f.
00 1

Ih(tW dt=-.
o 2

Since F(iy) -+ 0 as y -+ ± 00, integration by parts leads to

From [BUy)1 = 1, y E IR, we get

\; (F(iy) eiCy)1 ~ lu'(iy)1 + IU(IY)I)C + ~g:;l

and therefore

(2.4)

j2;c 11(t - c) h(t)11 L2(0, (0) ~ II u'(iy) II L2(~) + IIU(iy) (c + ~(~:;)IIL2(~)'

so that

Inserting this and (2.4) into (2.3), with a := j2 (Sn + 1/2), yields

Ilhlllp(o, (0) ~ j2 n(Sn + 1/2). (2.6)
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Introducing the notation

n

<>n:= L (Ak+1/p)-3/2=(r+1/p)-3/2Sn
k=l

it follows from (2.2) and (2.6) and the inequality 21/4(r + 1/p) -1/4::( 1, r ~ 2,
1 ::( p < 2, that

fln(X r, A)p::( fi (r + 1/p )l-llp IB( -1 )1- 1 (A + 1/2). (2.7)

By the definition of B( -1) and an inequality of Newman [16], we have

If <>n ~ 4'+ lip, then (2.1) follows by (2.7) and (2.8) and the observation that

fi (2 r + lip + 1/2)::( 2r + 1 + lip. Otherwise we apply the next lemma. I

LEMMA 2.2. If r ~ 2, 1~ p < 2, and if A is a sequence ofpositive numbers
satisfying <>n > 4r + lip, then

(2.9)

Proof We set p :=r+ l/p~5/2, Sk :=Ak+ l/p, and define thefunctions

_(S- p)2 (y2+ (s+ 1)2)P
G(s, y) - s + P y2 + (s _ 1)2 '

n

H(y)= L logG(sk> y).
k=l

For fixed s > 0, G(s, y) is a monotone decreasing function in 0::( y < 00,
hence H(y) is also monotone decreasing for y ~ 0. In addition, the
logarithmic derivative of G(s, 0) is 4p(p2-1)/((s2_ p2)(s2_1)). Hence
G(s, 0) is monotone increasing in p < s < 00 and

(s- p)2 (s+ Ifp
G(s, y)::( G(s, 0)= (s+ p)2 (s-I)2P< G( + 00,0)= 1, s>p. (2.10)

Let p < s::( y/2. Using the inequality (1 - x)/(1 + x)::( e- 2x
, °< x < 1, we

then obtain

4p { 4S} 4p 4ps 3plogG(s,y)::( --+plog 1+ ~ --+-::( --.
S y2 + (s - 1)2 S y2 S

Similarly, if s < p ::( y/2, then log G(s, y) ::( - 3s/p.
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We define the sets of indices

Mj:={kEN:2j-lp~Sk<2jp}, j~l,

and get from (2.10) that

H(2p) ~ L log G(sk> 2p),
Sk <P

H(2j+lp)~ L logG(sk,2J+ 1p), j~1.

kEMj

Since Sk> l/p > 1/2 and p5/2 ~ 6 it follows that

and for j= 1, 2, ...,

343

(2.11 )

H(2J+lp)~ -3p L S;;I ~ -3p2J/
2 L S;;3/2. (2.12)

k<3 Mj kEMj

Hence, taking the sums of (2.11) and (2.12),

00

Dn = L S;3/2 + L I s;;3/2
Sk <. p J = 1 k E Mj

(2.13)

By the definition of 8 n(A)p as the maximum (1.3), it follows that (2.9) is
valid if and only if

(2.14)

holds for at least one y ~ O.
Let us suppose to the contrary that (2.9) is wrong, hence that (2.14) is

wrong for all y ~ O. Then we have from (2.13) that

bn~ 2p log (jn + 2p2 1og(1+ 1/(4p2»

+~ f 2-J/2{log on + P 10g(41 + 1/(4p2»},
PJ=l

hence

(2.15 )
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if we use that log (In?: p log 4, p?: 5/2 and

co

L: 2-J/210g(4J+ 1/(4p2»::s; 12.
J= 1

But the inequalities (2.15) and (In?: 4P cannot be valid simultaneously, a
contradiction. I

3. MUNTZ-JACKSON THEOREMS

We shall need

LEMMA 3.1. For 1::S; p::S; 2, m?: 1, and absolutely continuous functions f
on [0, 1] there exists an even algebraic polynomial Pm(x) = LJ:~] a2Jx 2J for
which

(3.1 )

la2JI::S;Kpm2J-l+l/p 11f'll pl(2j)!, 1 ::S;j::S; [mI2], (3.2)

where Kp::S; Jbr (2 .fi)l/P•

The proof of the last lemma can be found in [11], also for 2 < P ::s; 00

with Kp::S;2n.
We shall now prove our main result:

THEOREM 3.2. For 1 ::s; p < 2, the factor Ap in Theorem A is less than 42.

Proof Set h = 8n(A)p and define the integer m by

hm::s; 1/12<h(m+ 1).

Since °E A and Ilf - f(O)llp::S; 1If'll p we may assume that h < 1/42 and thus
that m?: 3. We insert Lemma 2.1 and Lemma 3.1 into (1.2). This yields that
f-lnCf, A)p is

{
!2 . [m/2]{2(2'+I/)}2J+l }

~ y£.n +21/PK L: } P (mh)2J-l+1/P h 11f'11
'" 2h(m + 1) p J= 1 (2j)! P

{

CO (2'+ II )2J+ 1 6- 2J}
::s; 6n.fi+24Kp6-1/P;~1 } &j)! h 1If'1Ip-

Since Kp::S; Jbr (2 .fi)l/P, it is easy to confirm that the expression in the
brackets is less than 42, for all 1::S; P < 2. I
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Let the smoothness of functions f E Lp(O, 1) be measured by the
Lebesgue modulus

(

I-h )l/P
OJp(f;fJ):= sup f If(x+h)-f(x)IPdx ;

O<h""iJ 0

let OJ 00 (f; fJ) be the usual modulus of continuity.
From Theorem A (and Theorem 3.2) one obtains, by standard techni­

ques, Muntz-Jackson theorems for other function classes in Lp(O, 1):

THEOREM 3.3. Let r = 0, 1,... and let Ak = k for k = 0, ..., r. Jf
prl E Lp(O, 1), 1:::;; p < (f), or ifprl E C[O, 1], p = 00, then, for n;?; r + 1,

fln(f, A)p:::;; Cr,pBn(A); OJp(f(r); Bn(A)p),

where Cr, p is independent off and n.

For example, if r = 0, one has CO,p < 84, 1:::;; p < 2. This follows from
Theorem 3.2 and Proposition 2.1 in [5]. A detailed representation of the
theory of Muntz polynomials will be given in Lorentz, v. Golitschek, and
Makovoz [14] including a complete proof of Theorem 3.3, but also
Muntz-Jackson theorems for positive intervals [a, b], 0 < a < b.
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