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Let A:0=4,<4;< --- be an infinite sequence of positive numbers, let ne N and
B,(z) :=[1;-, (z—2—1/p)/{(z + A+ 1/p). Ganelius and Newman have shown
that the expression ¢,(4),=max g | B,(1 +iy)/(1 +iy)] is the approximation index
for the etror p,(f, 4), =inf, | f(x)—~2%_, bkx;‘kup of functions fe L,{(0, 1} in the
L,-norm on [0, 13, 1< p< co. That is, if fis absolutely continuous on [0, 1], then
wlfs A), < Aye(A), ' . where A,,<229 is a numerical constant. It is the pur-
pose of the present paper to apply another method of proof which produces small
factors 4, <42, 1< p<2. As is well-known, the factor 4, is small if 2< p< oo, for
example, 4, < 14, which has been proved recently by the author.  © 1991 Academic
Press, Inc.

1. INTRODUCTION

Let A:0=41,<4, < --- be an infinite sequence of positive numbers. Let
[ 1, be the L, -norms on [0, 1]. We estimate the error of approximation,

>

P

S, A4), =inf
by

F) = 3 b
k=0

of functions f'e L,(0,1), I<p<2.

There are two methods to prove Miintz—Jackson theorems. The first, due
to Newman [ 157, uses a corollary of the Hahn—Banach theorem by which
u.(f, 4), is characterized as

ualf, ), =sup [ f(x) H(x) . (L1)

where the supremum is taken over all functions He L,(0, 1), g :=p/(p— 1},
satisfying |[H||,=1 and

1
j X*H(x)dx=0, k=01, ..n
[}
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The second method, suggested by the author [7], is more elementary
and will be used in this paper: first the function f is approximated on
[0, 1] by an appropriate even algebraic polynomial P, (x)=3!"21a,,x%,
then the monomials x%, j=1,2, .., [m/2] are replaced by appropriate
A-polynomials. And we get

[m/2]
un(.f; /l)p< “f_Pm“p+ Z IaZjI .un(xzja A)p (1'2)

Jj=1

An essential role will be played by the Blaschke product

d Z—j.k—l/p
B (z)=[] ——=x—1F
o(2) kl;[lz+lk+1/p

and the number
B,(1+iy) _

1.
1+idy (13)

en(A),= max

For example, (see Feinerman and Newman [4]), in the separate case,
Aky1—Ax =2 for k=0, one has

“ 1
g,(A),~exp| —2 >,
( )p p< kZ_-:1 A+ 1/p

and in the unseparate case, 0 <A, ,— A4 <2, k=0,1, ..,

n 1\ — 12
(L (r3))

A general Miintz—Jackson theorem has been established by Ganelius and
Newman [5]. They show that the expression ¢,(4), is the approximation
index for the exponents 4 :

THEOREM A. If 1< p< 0, neN, and if f is absolutely continuous on
[0, 17, then

talfs A)p < Apea(A), L] s

where A, <2% is a numerical constant.

Ganelius and Newman show that this result is the best possible in the
sense that it is false for each p, each 4, and each ne N if 4, is replaced by
1/600. Their proofs use the characterization (1.1) and are difficult; their
factor 4,<2%, is very large. The method (1.2) is simpler and produces
factors 4,<42, 1< p<2.
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It is well-known that A, is small if 2< p< oo; for example, 4, <14,
which has been proved recently by the author [11].
2. APPROXIMATION OF THE MONOMIALS

For the L,-norm on [0, 1] we have the identity
1 d ;r - /ﬂvk|

.un(xrzA) = 5
2 «/2r+1kl;[or+/lk+l

r> —1/2. In [11], this has been used to derive the inequality

1+1/p I"] Jr— Ayl

" A), < ,
HalX', A), Qr+2/p)77 My 2/p

for r> —1/p and 2 < p < o0, in particular for the uniform norm on [0, 17,
for r >0,

(X", A) o < 1

which has been derived first in [7].
Similar results for 1< p<2 are more difficult to get. The following

inequality is the main new achievement of this paper:

LemMa 2.1. For 1 < p<2 and any real number r =2 one has
po(x, A), <2YP{2(r+1/p)} H e, (A), TR, 2.0

Proof. We set

= oz—{ 1
Ik u(z) =

At lp
lal-£ 4 A z+ 1

T r41yp

B(z):=

and F(z) :=u(z) B(z). F is of the form

B(—1) Cr
F(z)= —
@ z+1 k§12+lk

with some real coefficients ¢,. The evaluation of the integrals (or the
standard residue argument) gives

1 = &% e "t if >0

2n)_oiy+p 0, if <0
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for all positive numbers p. Hence the inverse Fourier transform
h(t) == [ Y Riy) e dy
2nJ _ o
of F(iy) satisfies 4(z)=0 if t <0 and is of the form
h(t)=B(—1)e "= Y cre™™, t>0.
k
We set b, =c,/B(—1). Substituting x =exp(—¢/(r+ 1/p)) we get

n
x= Y bpxt

k=1

Pa(X"s A), <

S(r+1/p) 7 [B(=DI bl 0,000 (22)

p

The difficult part is to estimate | 4|| L0, 0)- We note that

dy i

| wnra= j_mm_z-

Weset c:=2>7_,1," and

= 3 1=+ D S et 1)

k=1
Then
B'(iy) } Lo 2y?
¢l = —_—
‘ B(iy) ,El L(y*+13)
and

I

2 © n 2y 2
dy< ( ——-—> d
v<| (X roerm) @

/ 4y°d z R
<Z J—w k(yy+;)k)) ZZnS"'

For a fixed number a, a > 1/x, and v(¢) := a® + (¢ — ¢)* we apply Holder’s
inequality for the exponent g :=2/p. Then

B(iy)

) 2/p )
llhlli,,<o,oo)=<f0 ()7 | /v(t)h(t)lpdl> sKL () |h(1))? dt,
where

o y ) —1+2/p
. —p/(2—p
K= (L o(t) dt) .
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Since p/(2—p)=1 and an =1,

K<a3+%? (Jw

- o0

—1+2/p T
(1+t2)*p/{2—17) dt) S;‘

This proves that
g mr < (@] @R di+ [ =R o dr). 23)
Ly0,0) T{ 4 . 2l ¢ . .
By Parseval’s identity,

[mora=[" mopa=o | Fenzd=o " .

where we have used that |B(iy)] =1 for any real y. Hence,

f h(1)| di = . (2.4)
0 2
Since F(iy)—0 as y — 100, integration by parts leads to
o d . 2
_ 2 all . ic
2nj (t—¢)? |h(t)| dt_Lw ’dy (F(iy) e)| dy.
From [B(iy)| =1, y e R, we get
d . B(iy)
— (F(iy) €)| < —
5 R e B(iy)
and therefore
. . B'(iy)
N2 =) RO oo ooy S 20 + {uli <c+ - > ,
(N 2200, 009 N Lx(R) (y) Bi) )| e
so that
H(t——c)h(l)”Lz(O,oo)<%+ S,. (2.5}

Inserting this and (2.4) into (2.3), with a := \/5 (S, + 1/2), yields
1412 0, 00) S A/ 2 (S, + 1/2). (2.6)
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Introducing the notation

n

Z cH1p) P=(r+1/p)" S

it follows from (2.2) and (2.6) and the inequality 2Y4(r + 1/p) "4 <1, r= 2,
1< p<?2, that

(X" A), </7 (r+1/p) =17 |B(= 1) 7H (3, +1/2).  (27)

By the definition of B(—1) and an inequality of Newman [16], we have

n

-1 __ Ir—j'kl r+1/p
|B(—1)| l—kljl————er”/ps((H1/p)e,,(A),,) Ve, (2.8)

If 6, < 4"+ 7, then (2.1) follows by (2.7) and (2.8) and the observation that
V(2P 4 1/2) <27+ L+ 12 Otherwise we apply the next lemma. ||

Lemma 22, Ifr=22, 1< p<2, and if A is a sequence of positive numbers
satisfying 8,>4" 7 then

n lk 1
V. H r+/1k+2'/ <{2(r+1/p) e,(4), 17+, (2.9)

Proof. Weset p:=r+1/p=5/2, s, :=4,+1/p, and define the functions

P\ (¥ (s+1)%Y -
66 =(352) (Frtqp) HO)= £ logGlse, )

For fixed s>0, G(s, y) is a monotone decreasing function in 0< y < 0,
hence H(y) is also monotone decreasing for y>=0. In addition, the
logarithmic derivative of G(s,0) is 4p(p?—1)/((s*— p?)(s*—1)). Hence
G(s, 0) is monotone increasing in p <s< oo and

(s—p)? (s+1)*
(s+p) (s—1)*

G(s, )< G(s,0)= <G(+0,0)=1, §>p. (2.10)
Let p <s< y/2. Using the inequality (1 —x)/(1+x)<e >, 0<x<1, we
then obtain

4s }< 4p 4ps §£

y2+(s—1)2 +——5_

4
log G{s, y)<—£+plog{1+ .
s y s

Similarly, if s < p < y/2, then log G(s, y) < —3s/p.
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We define the sets of indices
M,:={keN:2"1p<s, <2p},  j21,
and get from (2.10) that

H(zp)g Z log G(Sk52p)a
Sp<p -
HQ/*'p)< ¥, logGls,, 2 1p),  j=1.

ke M;

Since s, > 1/p>1/2 and p** <6 it follows that

3 1
H(2p)< —= ) s, < -5 Y o5 (2.11)
Sp<p Sp<p
and for j=1,2, ..,
HQ*'p)<=3p Y, sg'<—=3p277 ¥ 5772 (2.12)
ke M; ke M;

Hence, taking the sums of (2.11) and (2.12),

o
b,= 2 s Y Y s

Sk<<p J=1keM;

1 & ,
< —2,0H(2p)—§; N 27RH(2F ). (2.13)
j=1

By the definition of &,(A4), as the maximum (1.3), it follows that (2.9) is
valid if and only if

H(y)< —logd,~ plog{(1 + y*)/(4p*)} (2.14)

holds for at least one y=0.
Let us suppose to the contrary that (2.9) is wrong, hence that (2.14) is
wrong for all y 2 0. Then we have from (2.13) that
8,<2plogé, +2p log(1l +1/(4p?))
12 . .
+35 L 2 7 {logd, + plog(4/+ 1/(4p")),
J=1

hence

5,<(2p+1}logd,+4p, 2.15)
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if we use that logd,=plog4, p>5/2 and

Y 27 log(4 + 1/(4p?)) < 12,

But the inequalities (2.15) and J,>4* cannot be valid simultaneously, a
contradiction. ||

3. MUNTZ-JACKSON THEOREMS
We shall need

LemMa 3.1. For 1< p<2, m=1, and absolutely continuous functions f
on [0, 1] there exists an even algebraic polynomial P, (x)= Y[ a,;x* for
which

N
=Pl < 5o 11 (3.1)
lay, | <K,m® =10V 1,020 1<G<m2),  (32)

where K, <./2m (2 \/—2—)1/”.

The proof of the last lemma can be found in [11]}, also for 2<p<
with K, <2n.

We shall now prove our main result:

THEOREM 3.2. For 1< p<2, the factor A, in Theorem A is less than 42.

Proof. Set h=¢,(A), and define the integer m by
m<1/12 <h(m+1).

Since O 4 and | f— f(0)Il, < |lf’ll, we may assume that /< 1/42 and thus
that m2 = 3. We insert Lemma 2.1 and Lemma 3.1 into (1.2). This yields that

Balfs 4), 18

27 21 £(7 1 2j+1

; 2j+1 27
<{6nﬁ+241<p6“”"2 (2J+1/(1;)j)! : ]}h”f’u,,.

Since K,<./2n (2 \/5)1/”, it is easy to confirm that the expression in the
brackets is less than 42, for all 1< p<2. ]
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Let the smoothness of functions feL,(0,1) be measured by the
Lebesgue modulus

1—h ip
o= swp ([ e m -t a)

O<h<d

let w . (f; &) be the usual modulus of continuity.
From Theorem A (and Theorem 3.2) one obtains, by standard techni-
ques, Mintz—Jackson theorems for other function classes in L,(0, 1):

THEOREM 3.3. Let r=0,1,.. and let i,=k for k=0,.,r. If
fOeL,(0,1), 1<p<oo, or if fPeC[0, 1], p=co, then, for nzr+1,

1Sy ), < C, pe(A), 0,(f 75 e(4),),
where C, , is independent of f and n.

For example, if r=0, one has C, ,<84, 1< p<2. This follows from
Theorem 3.2 and Proposition 2.1 in [5]. A detailed representation of the
theory of Miintz polynomials will be given in Lorentz, v. Golitschek, and
Makovoz [14] including a. complete proof of Theorem 3.3, but also
Miintz—Jackson theorems for positive intervals [a, b], 0 <a<b.
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