Müntz-Jackson Theorems in $L_{p}(0,1), 1 \leqslant p<2$

Manfred v. Golitschek

Institut für Angewandte Mathematik und Statistik, der Universität Würzburg, 8700 Würzburg, Germany
Communicated by Paul Nevai

Received October 17, 1990; revised February 5, 1991

Let $A: 0=\lambda_{0}<\lambda_{1}<\cdots$ be an infinite sequence of positive numbers, let $n \in \mathbb{N}$ and $B_{p}(z):=\prod_{k=1}^{n}\left(z-\lambda_{k}-1 / p\right) /\left(z+\lambda_{k}+1 / p\right)$. Ganelius and Newman have shown that the expression $\varepsilon_{n}(\Lambda)_{p}=\max _{y \in R}\left|B_{p}(1+i y) /(1+i y)\right|$ is the approximation index for the error $\mu_{n}(f, A)_{p}:=\inf _{b_{k}}\left\|f(x)-\sum_{k=0}^{n} b_{k} x^{2}\right\|_{p}$ of functions $f \in L_{p}(0,1)$ in the L_{p}-norm on $[0,1], 1 \leqslant p \leqslant \infty$. That is, if f is absolutely continuous on [0,1], then $\mu_{n}(f, \Lambda)_{p} \leqslant A_{p} \varepsilon_{n}(\Lambda)_{p}\left\|f^{\prime}\right\|_{p}$, where $A_{p}<2^{29}$ is a numerical constant. It is the purpose of the present paper to apply another method of proof which produces small factors $A_{p}<42,1 \leqslant p<2$. As is well-known, the factor A_{p} is small if $2 \leqslant p \leqslant \infty$, for example, $A_{p}<14$, which has been proved recently by the author. © 1991 Academic Press, Inc.

1. Introduction

Let $A: 0=\lambda_{0}<\lambda_{1}<\cdots$ be an infinite sequence of positive numbers. Let $\left\|\|_{p}\right.$ be the L_{p}-norms on [0,1]. We estimate the error of approximation,

$$
\mu_{n}(f, A)_{p}:=\inf _{b_{k}}\left\|f(x)-\sum_{k=0}^{n} b_{k} x^{i_{k}}\right\|_{p},
$$

of functions $f \in L_{p}(0,1), 1 \leqslant p<2$.
There are two methods to prove Müntz-Jackson theorems. The first, due to Newman [15], uses a corollary of the Hahn Banach theorem by which $\mu_{n}(f, \Lambda)_{p}$ is characterized as

$$
\begin{equation*}
\mu_{n}(f, \Lambda)_{p}=\sup _{H} \int_{0}^{1} f(x) H(x) d x \tag{1.1}
\end{equation*}
$$

where the supremum is taken over all functions $H \in L_{q}(0,1), q:=p /(p-1)$, satisfying $\|H\|_{q}=1$ and

$$
\int_{0}^{1} x^{\lambda_{k}} H(x) d x=0, \quad k=0,1, \ldots, n .
$$

The second method, suggested by the author [7], is more elementary and will be used in this paper: first the function f is approximated on $[0,1]$ by an appropriate even algebraic polynomial $P_{m}(x)=\sum_{j=0}^{[m / 2]} a_{2 j} x^{2 j}$, then the monomials $x^{2 j}, j=1,2, \ldots,[m / 2]$ are replaced by appropriate A-polynomials. And we get

$$
\begin{equation*}
\mu_{n}(f, \Lambda)_{p} \leqslant\left\|f-P_{m}\right\|_{p}+\sum_{j=1}^{[m / 2]}\left|a_{2 j}\right| \mu_{n}\left(x^{2 j}, \Lambda\right)_{p} \tag{1.2}
\end{equation*}
$$

An essential role will be played by the Blaschke product

$$
B_{p}(z)=\prod_{k=1}^{n} \frac{z-\lambda_{k}-1 / p}{z+\lambda_{k}+1 / p}
$$

and the number

$$
\begin{equation*}
\varepsilon_{n}(\Lambda)_{p}=\max _{y \geqslant 0}\left|\frac{B_{p}(1+i y)}{1+i y}\right| \tag{1.3}
\end{equation*}
$$

For example, (see Feinerman and Newman [4]), in the separate case, $\lambda_{k+1}-\lambda_{k} \geqslant 2$ for $k \geqslant 0$, one has

$$
\varepsilon_{n}(\Lambda)_{p} \approx \exp \left(-2 \sum_{k=1}^{n} \frac{1}{\lambda_{k}+1 / p}\right),
$$

and in the unseparate case, $0<\lambda_{k+1}-\lambda_{k} \leqslant 2, k=0,1, \ldots$,

$$
\varepsilon_{n}(\Lambda)_{p} \approx\left(\sum_{k=1}^{n}\left(\lambda_{k}+\frac{1}{p}\right)\right)^{-1 / 2} .
$$

A general Müntz-Jackson theorem has been established by Ganelius and Newman [5]. They show that the expression $\varepsilon_{n}(\Lambda)_{p}$ is the approximation index for the exponents Λ :

Theorem A. If $1 \leqslant p \leqslant \infty, n \in \mathbb{N}$, and if f is absolutely continuous on $[0,1]$, then

$$
\mu_{n}(f, A)_{p} \leqslant A_{p} \varepsilon_{n}(A)_{p}\left\|f^{\prime}\right\|_{p}
$$

where $A_{p}<2^{29}$ is a numerical constant.
Ganelius and Newman show that this result is the best possible in the sense that it is false for each p, each Λ, and each $n \in \mathbb{N}$ if A_{p} is replaced by $1 / 600$. Their proofs use the characterization (1.1) and are difficult; their factor $A_{p}<2^{29}$, is very large. The method (1.2) is simpler and produces factors $A_{p}<42,1 \leqslant p<2$.

It is well-known that A_{p} is small if $2 \leqslant p \leqslant \infty$; for example, $A_{p}<14$, which has been proved recently by the author [11].

2. Approximation of the Monomials

For the L_{2}-norm on $[0,1]$ we have the identity

$$
\mu_{n}\left(x^{r}, \Lambda\right)_{2}=\frac{1}{\sqrt{2 r+1}} \prod_{k=0}^{n} \frac{\left|r-\lambda_{k}\right|}{r+\lambda_{k}+1}
$$

$r>-1 / 2$. In [11], this has been used to derive the inequality

$$
\mu_{n}\left(x^{r}, \Lambda\right)_{p} \leqslant \frac{1+1 / p}{(2 r+2 / p)^{1 / p}} \prod_{k=1}^{n} \frac{\left|r-\lambda_{k}\right|}{r+\lambda_{k}+2 / p}
$$

for $r>-1 / p$ and $2<p \leqslant \infty$, in particular for the uniform norm on [0, 1], for $r>0$,

$$
\mu_{n}\left(x^{r}, \Lambda\right)_{\infty} \leqslant \prod_{k=1}^{n} \frac{\left|r-\lambda_{k}\right|}{r+\lambda_{k}}
$$

which has been derived first in [7].
Similar results for $1 \leqslant p<2$ are more difficult to get. The following inequality is the main new achievement of this paper:

Lemma 2.1. For $1 \leqslant p<2$ and any real number $r \geqslant 2$ one has

$$
\begin{equation*}
\mu_{n}\left(x^{r}, \Lambda\right)_{p} \leqslant 2^{1 / p}\{2(r+1 / p)\}^{r+1} \varepsilon_{n}(A)_{p}^{r+1 / p} \tag{2.1}
\end{equation*}
$$

Proof. We set

$$
l_{k}:=\frac{\lambda_{k}+1 / p}{r+1 / p}, \quad B(z):=\prod_{k=1}^{n} \frac{z-l_{k}}{z+l_{k}}, \quad u(z):=\frac{1}{z+1}
$$

and $F(z):=u(z) B(z) . F$ is of the form

$$
F(z)=\frac{B(-1)}{z+1}-\sum_{k=1}^{n} \frac{c_{k}}{z+l_{k}}
$$

with some real coefficients c_{k}. The evaluation of the integrals (or the standard residue argument) gives

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{e^{i t y}}{i y+\rho} d y= \begin{cases}e^{-\rho t} & \text { if } \quad t>0 \\ 0, & \text { if } \quad t<0\end{cases}
$$

for all positive numbers ρ. Hence the inverse Fourier transform

$$
h(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(i y) e^{i t y} d y
$$

of $F(i y)$ satisfies $h(t)=0$ if $t<0$ and is of the form

$$
h(t)=B(-1) e^{-t}-\sum_{k=1}^{n} c_{k} e^{-t t_{k}}, \quad t>0
$$

We set $b_{k}=c_{k} / B(-1)$. Substituting $x=\exp (-t /(r+1 / p))$ we get

$$
\begin{equation*}
\mu_{n}\left(x^{r}, A\right)_{p} \leqslant\left\|x^{r}-\sum_{k=1}^{n} b_{k} x^{\lambda_{k}}\right\|_{p} \leqslant(r+1 / p)^{-1 / p}|B(-1)|^{-1}\|h\|_{L_{p}(0, \infty)} \tag{2.2}
\end{equation*}
$$

The difficult part is to estimate $\|h\|_{L_{p}(0, \infty)}$. We note that

$$
\int_{-\infty}^{\infty}\left|u^{\prime}(i y)\right|^{2} d y=\int_{-\infty}^{\infty} \frac{d y}{\left(1+y^{2}\right)^{2}}=\frac{\pi}{2} .
$$

We set $c:=2 \sum_{k=1}^{n} l_{k}^{-1}$ and

$$
S_{n}:=\sum_{k=1}^{n} l_{k}^{-3 / 2}=(r+1 / p)^{3 / 2} \sum_{k=1}^{n}\left(\lambda_{k}+1 / p\right)^{-3 / 2}
$$

Then

$$
\left|\frac{B^{\prime}(i y)}{B(i y)}+c\right|=\sum_{k=1}^{n} \frac{2 y^{2}}{l_{k}\left(y^{2}+l_{k}^{2}\right)}
$$

and

$$
\begin{aligned}
\int_{-\infty}^{\infty}|u(i y)|^{2}\left|c+\frac{B^{\prime}(i y)}{B(i y)}\right|^{2} d y & \leqslant \int_{-\infty}^{\infty}\left(\sum_{k=1}^{n} \frac{2 y}{l_{k}\left(y^{2}+l_{k}^{2}\right)}\right)^{2} d y \\
& \leqslant\left(\sum_{k=1}^{n} \sqrt{\int_{-\infty}^{\infty} \frac{4 y^{2} d y}{l_{k}^{2}\left(y^{2}+l_{k}^{2}\right)^{2}}}\right)^{2}=2 \pi S_{n}^{2}
\end{aligned}
$$

For a fixed number $a, a \geqslant 1 / \pi$, and $v(t):=a^{2}+(t-c)^{2}$ we apply Hölder's inequality for the exponent $q:=2 / p$. Then

$$
\|h\|_{L_{p}(0, \infty)}^{2}=\left(\int_{0}^{\infty} v(t)^{-p / 2}|\sqrt{v(t)} h(t)|^{p} d t\right)^{2 / p} \leqslant K \int_{0}^{\infty} v(t)|h(t)|^{2} d t
$$

where

$$
K:=\left(\int_{0}^{\infty} v(t)^{-p /(2-p)} d t\right)^{-1+2 / p}
$$

Since $p /(2-p) \geqslant 1$ and $a \pi \geqslant 1$,

$$
K \leqslant a^{-3+z / p}\left(\int_{-\infty}^{\infty}\left(1+t^{2}\right)^{-p /(2-p)} d t\right)^{-1+2 / p} \leqslant \frac{\pi}{a}
$$

This proves that

$$
\begin{equation*}
\|h\|_{L_{p}(0, \infty)}^{2} \leqslant \pi\left(a \int_{0}^{\infty}|h(t)|^{2} d t+\frac{1}{a} \int_{0}^{\infty}(t-c)^{2}|h(t)|^{2} d t\right) \tag{2.3}
\end{equation*}
$$

By Parseval's identity,

$$
\int_{0}^{\infty}|h(t)|^{2} d t=\int_{-\infty}^{\infty}|h(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|F(i y)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|u(i y)|^{2} d t
$$

where we have used that $|B(i y)|=1$ for any real y. Hence,

$$
\begin{equation*}
\int_{0}^{\infty}|h(t)|^{2} d t=\frac{1}{2} \tag{2.4}
\end{equation*}
$$

Since $F(i y) \rightarrow 0$ as $y \rightarrow \pm \infty$, integration by parts leads to

$$
2 \pi \int_{-\infty}^{\infty}(t-c)^{2}|h(t)|^{2} d t=\int_{-\infty}^{\infty}\left|\frac{d}{d y}\left(F(i y) e^{i c y}\right)\right|^{2} d y
$$

From $|B(i y)|=1, y \in \mathbb{R}$, we get

$$
\left|\frac{d}{d y}\left(F(i y) e^{i c y}\right)\right| \leqslant\left|u^{\prime}(i y)\right|+|u(i y)|\left|c+\frac{B^{\prime}(i y)}{B(i y)}\right|
$$

and therefore

$$
\sqrt{2 \pi}\|(t-c) h(t)\|_{L_{2}(0, \infty)} \leqslant\left\|u^{\prime}(i y)\right\|_{L_{2}(\mathbb{R})}+\left\|u(i y)\left(c+\frac{B^{\prime}(i y)}{B(i y)}\right)\right\|_{L_{2}(\mathbb{R})}
$$

so that

$$
\begin{equation*}
\|(t-c) h(t)\|_{L_{2}(0, \infty)} \leqslant \frac{1}{2}+S_{n} \tag{2.5}
\end{equation*}
$$

Inserting this and (2.4) into (2.3), with $a:=\sqrt{2}\left(S_{n}+1 / 2\right)$, yields

$$
\begin{equation*}
\|h\|_{L_{p}(0, \infty)}^{2} \leqslant \sqrt{2} \pi\left(S_{n}+1 / 2\right) \tag{2.6}
\end{equation*}
$$

Introducing the notation

$$
\delta_{n}:=\sum_{k=1}^{n}\left(\lambda_{k}+1 / p\right)^{-3 / 2}=(r+1 / p)^{-3 / 2} S_{n}
$$

it follows from (2.2) and (2.6) and the inequality $2^{1 / 4}(r+1 / p)^{-1 / 4} \leqslant 1, r \geqslant 2$, $1 \leqslant p<2$, that

$$
\begin{equation*}
\mu_{n}\left(x^{r}, A\right)_{p} \leqslant \sqrt{\pi}(r+1 / p)^{1-1 / p}|B(-1)|^{-1}\left(\sqrt{\delta_{n}}+1 / 2\right) . \tag{2.7}
\end{equation*}
$$

By the definition of $B(-1)$ and an inequality of Newman [16], we have

$$
\begin{equation*}
|B(-1)|^{-1}=\prod_{k=1}^{n} \frac{\left|r-\lambda_{k}\right|}{r+\lambda_{k}+2 / p} \leqslant\left((r+1 / p) \varepsilon_{n}(A)_{p}\right)^{r+1 / p} \tag{2.8}
\end{equation*}
$$

If $\delta_{n} \leqslant 4^{r+1 / P}$, then (2.1) follows by (2.7) and (2.8) and the observation that $\sqrt{\pi}\left(2^{r+1 / p}+1 / 2\right) \leqslant 2^{r+1+1 / p}$. Otherwise we apply the next lemma.

Lemma 2.2. If $r \geqslant 2,1 \leqslant p<2$, and if A is a sequence of positive numbers satisfying $\delta_{n}>4^{r+1 / p}$, then

$$
\begin{equation*}
\sqrt{\delta_{n}} \prod_{k=1}^{n} \frac{\left|r-\lambda_{k}\right|}{r+\lambda_{k}+2 / p} \leqslant\left\{2(r+1 / p) \varepsilon_{n}(\Lambda)_{p}\right\}^{r+1 / p} \tag{2.9}
\end{equation*}
$$

Proof. We set $\rho:=r+1 / p \geqslant 5 / 2, s_{k}:=\lambda_{k}+1 / p$, and define the functions

$$
G(s, y)=\left(\frac{s-\rho}{s+\rho}\right)^{2}\left(\frac{y^{2}+(s+1)^{2}}{y^{2}+(s-1)^{2}}\right)^{\rho}, \quad H(y)=\sum_{k=1}^{n} \log G\left(s_{k}, y\right)
$$

For fixed $s>0, G(s, y)$ is a monotone decreasing function in $0 \leqslant y<\infty$, hence $H(y)$ is also monotone decreasing for $y \geqslant 0$. In addition, the logarithmic derivative of $G(s, 0)$ is $4 \rho\left(\rho^{2}-1\right) /\left(\left(s^{2}-\rho^{2}\right)\left(s^{2}-1\right)\right)$. Hence $G(s, 0)$ is monotone increasing in $\rho<s<\infty$ and
$G(s, y) \leqslant G(s, 0)=\frac{(s-\rho)^{2}}{(s+\rho)^{2}} \frac{(s+1)^{2 \rho}}{(s-1)^{2 \rho}}<G(+\infty, 0)=1, \quad s>\rho$.
Let $\rho<s \leqslant y / 2$. Using the inequality $(1-x) /(1+x) \leqslant e^{-2 x}, 0<x<1$, we then obtain

$$
\log G(s, y) \leqslant-\frac{4 \rho}{s}+\rho \log \left\{1+\frac{4 s}{y^{2}+(s-1)^{2}}\right\} \leqslant-\frac{4 \rho}{s}+\frac{4 \rho s}{y^{2}} \leqslant-\frac{3 \rho}{s} .
$$

Similarly, if $s<\rho \leqslant y / 2$, then $\log G(s, y) \leqslant-3 s / \rho$.

We define the sets of indices

$$
M_{j}:=\left\{k \in \mathbb{N}: 2^{j-1} \rho \leqslant s_{k}<2^{j} \rho\right\}, \quad j \geqslant 1,
$$

and get from (2.10) that

$$
\begin{aligned}
H(2 \rho) & \leqslant \sum_{s_{k}<\rho} \log G\left(s_{k}, 2 \rho\right) \\
H\left(2^{j+1} \rho\right) & \leqslant \sum_{k \in M_{j}} \log G\left(s_{k}, 2^{j+1} \rho\right), \quad j \geqslant 1 .
\end{aligned}
$$

Since $s_{k}>1 / p>1 / 2$ and $p^{5 / 2} \leqslant 6$ it follows that

$$
\begin{equation*}
H(2 \rho) \leqslant-\frac{3}{\rho} \sum_{s_{k}<p} s_{k} \leqslant-\frac{1}{2 \rho} \sum_{s_{k}<p} s_{k}^{-3 / 2} \tag{2.11}
\end{equation*}
$$

and for $j=1,2, \ldots$,

$$
\begin{equation*}
H\left(2^{j+1} \rho\right) \leqslant-3 \rho \sum_{k \in M_{j}} s_{k}^{-1} \leqslant-3 \rho 2^{j / 2} \sum_{k \in M_{j}} s_{k}^{-3 / 2} \tag{2.12}
\end{equation*}
$$

Hence, taking the sums of (2.11) and (2.12),

$$
\begin{align*}
\delta_{n} & =\sum_{s_{k}<\rho} s_{k}^{-3 / 2}+\sum_{j=1}^{\infty} \sum_{k \in M_{j}} s_{k}^{-3 / 2} \\
& \leqslant-2 \rho H(2 \rho)-\frac{1}{3 \rho} \sum_{j=1}^{\infty} 2^{-j / 2} H\left(2^{j+1} \rho\right) . \tag{2.13}
\end{align*}
$$

By the definition of $\varepsilon_{n}(A)_{P}$ as the maximum (1.3), it follows that (2.9) is valid if and only if

$$
\begin{equation*}
H(y) \leqslant-\log \delta_{n}-\rho \log \left\{\left(1+y^{2}\right) /\left(4 \rho^{2}\right)\right\} \tag{2.14}
\end{equation*}
$$

holds for at least one $y \geqslant 0$.
Let us suppose to the contrary that (2.9) is wrong, hence that (2.14) is wrong for all $y \geqslant 0$. Then we have from (2.13) that

$$
\begin{aligned}
\delta_{n} \leqslant & 2 \rho \log \delta_{n}+2 \rho^{2} \log \left(1+1 /\left(4 \rho^{2}\right)\right) \\
& +\frac{1}{3 \rho} \sum_{j=1}^{\infty} 2^{-j / 2}\left\{\log \delta_{n}+\rho \log \left(4^{j}+1 /\left(4 \rho^{2}\right)\right)\right\}
\end{aligned}
$$

hence

$$
\begin{equation*}
\delta_{n} \leqslant(2 \rho+1) \log \delta_{n}+4 \rho \tag{2.15}
\end{equation*}
$$

if we use that $\log \delta_{n} \geqslant \rho \log 4, \rho \geqslant 5 / 2$ and

$$
\sum_{j=1}^{\infty} 2^{-j / 2} \log \left(4^{j}+1 /\left(4 \rho^{2}\right)\right) \leqslant 12
$$

But the inequalities (2.15) and $\delta_{n} \geqslant 4^{\rho}$ cannot be valid simultaneously, a contradiction.

3. Müntz-Jackson Theorems

We shall need
LEMMA 3.1. For $1 \leqslant p \leqslant 2, m \geqslant 1$, and absolutely continuous functions f on $[0,1]$ there exists an even algebraic polynomial $P_{m}(x)=\sum_{j=0}^{[m / 2]} a_{2 j} x^{2 j}$ for which

$$
\begin{align*}
\left\|f-P_{m}\right\|_{p} & \leqslant \frac{\sqrt{2} \pi}{2(m+1)}\left\|f^{\prime}\right\|_{p} \tag{3.1}\\
& \left|a_{2 j}\right| \leqslant K_{p} m^{2 j-1+1 / p}\left\|f^{\prime}\right\|_{p} /(2 j)!, \quad 1 \leqslant j \leqslant[m / 2] \tag{3.2}
\end{align*}
$$

where $K_{p} \leqslant \sqrt{2 \pi}(2 \sqrt{2})^{1 / p}$.
The proof of the last lemma can be found in [11], also for $2<p \leqslant \infty$ with $K_{p} \leqslant 2 \pi$.

We shall now prove our main result:
Theorem 3.2. For $1 \leqslant p<2$, the factor A_{p} in Theorem A is less than 42.
Proof. Set $h=\varepsilon_{n}(A)_{p}$ and define the integer m by

$$
h m \leqslant 1 / 12<h(m+1)
$$

Since $0 \in A$ and $\|f-f(0)\|_{p} \leqslant\left\|f^{\prime}\right\|_{p}$ we may assume that $h<1 / 42$ and thus that $m \geqslant 3$. We insert Lemma 2.1 and Lemma 3.1 into (1.2). This yields that $\mu_{n}(f, A)_{p}$ is

$$
\begin{aligned}
& \leqslant\left\{\frac{\sqrt{2} \pi}{2 h(m+1)}+2^{1 / p} K_{p} \sum_{j=1}^{[m / 2]} \frac{\{2(2 j+1 / p)\}^{2 j+1}}{(2 j)!}(m h)^{2 j-1+1 / p}\right\} h\left\|f^{\prime}\right\|_{p} \\
& \leqslant\left\{6 \pi \sqrt{2}+24 K_{p} 6^{-1 / p} \sum_{j=1}^{\infty} \frac{(2 j+1 / p)^{2 j+1} 6^{-2 j}}{(2 j)!}\right\} h\left\|f^{\prime}\right\|_{p}
\end{aligned}
$$

Since $K_{p} \leqslant \sqrt{2 \pi}(2 \sqrt{2})^{1 / p}$, it is easy to confirm that the expression in the brackets is less than 42 , for all $1 \leqslant p<2$.

Let the smoothness of functions $f \in L_{p}(0,1)$ be measured by the Lebesgue modulus

$$
\omega_{p}(f ; \delta):=\sup _{0<h \leqslant \delta}\left(\int_{0}^{1-h}|f(x+h)-f(x)|^{p} d x\right)^{1 / p}
$$

let $\omega_{\infty}(f ; \delta)$ be the usual modulus of continuity.
From Theorem A (and Theorem 3.2) one obtains, by standard techniques, Müntz-Jackson theorems for other function classes in $L_{p}(0,1)$:

Theorem 3.3. Let $r=0,1, \ldots$ and let $\hat{\lambda}_{k}=k$ for $k=0, \ldots, r$. If $f^{(r)} \in L_{p}(0,1), 1 \leqslant p<\infty$, or if $f^{(r)} \in C[0,1], p=\infty$, then, for $n \geqslant r+1$,

$$
\mu_{n}(f, \Lambda)_{p} \leqslant C_{r, p} \varepsilon_{n}(\Lambda)_{p}^{r} \omega_{p}\left(f^{(r)} ; \varepsilon_{n}(A)_{p}\right)
$$

where $C_{r, p}$ is independent of f and n.
For example, if $r=0$, one has $C_{0, p}<84,1 \leqslant p<2$. This follows from Theorem 3.2 and Proposition 2.1 in [5]. A detailed representation of the theory of Müntz polynomials will be given in Lorentz, v. Golitschek, and Makovoz [14] including a complete proof of Theorem 3.3, but also Müntz Jackson theorems for positive intervals $[a, b], 0<a<b$.

References

1. J. Bak and D. J. Newman, Müntz-Jackson theorems in $L_{p}(0,1)$ and $C[0,1]$, Amer. J. Math. 94 (1972), 437-457.
2. J. Bak, D. Leviatan, D. J. Newman, and J. Tzimbalario, Generalized polynomial approximation, Israel J. Math. 15 (1973), 337-349.
3. J. Bak and D. J. Newman, Müntz-Jackson theorems in $L_{p}, p<2$, J. Approx. Theor. In (1974), 218-226.
4. R. P. Feinerman and D. J. Newman, "Polynomial Approximation," Williams \& Wilkins, Baltimore MD, 1974.
5. T. H. Ganelius and D. J. Newman, Müntz-Jackson theorems in L_{p}-spaces with unrestricted exponents, Amer. J. Math. 98 (1976), 295-309.
6. T. H. Ganelius and S. Westlund, The degree of approximation in Müntz-theorem, in "Proceedings of the Conference on Mathematical Analysis, Jyraskya, Finland, August 1970."
7. M. v. Golitschek, Erweiterung der Approximationssätze von Jackson im Sinne von C. Müntz, J. Approx. Theory 3 (1970), 72-86.
8. M. v. Golitschek, Jackson-Müntz Sätze in der L_{p}-Norm, J. Approx. Theory 7 (1973), 87-106.
9. M. v. Golitschek, Jackson-Müntz theorems in $L_{p}(0,1)$ and $C[0,1]$ for complex exponents, J. Approx. Theory 18 (1976), 13-29.
10. M. v. Golrtschek, Lineare Approximation durch komplexe Exponentialsummen, Math. Z. 146 (1976), 17-32.
11. M. v. Golitschek, Müntz polynomials and approximation with weights, in "Approximation Theory VI" (C. K. Chui, L. L. Schumaker, and J. D. Ward, Eds.), Vol. I, Academic Press, San Diego, 1989.
12. D. Leviatan, On the Jackson-Müntz theorem, J. Approx. Theory 10 (1974), 1-5.
13. D. Leviatan, On the rate of approximation by polynomials with complex exponents, J. London Math. Soc. 15 (1977), 305-318.
14. G. G. Lorentz, M. v. Golitschek, and Y. Makovoz, "Constructive Approximation. Advanced Problems," Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin/New York, to appear.
15. D. J. Newman, A Müntz-Jackson theorem, Amer. J. Math. 87 (1965), 940-944.
16. D. J. Newman, A review of Müntz-Jackson theorems, in "Approximation Theory" (G. G. Lorentz, Ed.), Academic Press, San Diego, 1973.
17. D. J. Newman, The Müntz-Jackson theorem in L_{2}, J. Approx. Theory 9 (1973), 91-95.
18. D. J. Newman, A general Müntz-Jackson theorem, Amer. J. Math. 96 (1974), 340-345.
